An arithmetic dynamical Mordell-Lang theorem

Trevor Hyde University of Michigan

Joint work with Mike Zieve

Squares in orbits

- Let $f(x) \in \mathbb{Q}(x)$ be a rational function, $a \in \mathbb{Q}$.
- Which $f^{n}(a)$ are squares?

Squares in orbits

- $f(x)=x^{2}$ and $a=$ anything
- $f^{n}(a)$ is a square for all $n \geq 1$.
- $f(x)=x+1$ and $a=0$
- $f^{n}(0)=n$ is a square when n is a square.
- These are boring examples...too easy.

Squares in orbits

- $f(x)=-x^{3}+4 x^{2}-4 x$ and $a=1$

n	$f^{n}(1)$		
0	1	$=$	1^{2}
1	-1		
2	9	$=$	3^{2}
3	-441		
4	86545809	$=$	9303^{2}
5	-648243402857703503235441		

- Every other iterate is a square!

Squares in orbits

- $f(x)=-x^{3}+4 x^{2}-4 x$ and $a=3$

n	$f^{n}(3)$
0	3
1	-3
2	75
3	-399675
4	63844765677693075

- No square iterates!

Squares in orbits

- All orbits of $f(x)=-x^{3}+4 x^{2}-4 x$ have one of these two forms (with the exception of the fixed point $a=0$.)
- Hint: $f(x)=-x^{3}+4 x^{2}-4 x=-x(x-2)^{2}$.
- Main observation: When there are infinitely many squares in an orbit, they appear periodically.

General question

- Suppose we have
- a field K,
- rational function $f(x) \in K(x)$,
- $a \in K$,
- a curve \mathcal{C} / K together with a map $u: \mathcal{C} \rightarrow \mathbb{P}^{1}$.
- Which iterates $f^{n}(a)$ are in $u(\mathcal{C}(K))$?
- Original question: $\mathcal{C}=\mathbb{P}^{1}$ and $u(x)=x^{2}$.

General question

- Which iterates $f^{n}(a)$ are in $u(\mathcal{C}(K))$?
- Question posed by Cahn, Jones, Spear (2016) who give a complete answer when $\mathcal{C}=\mathbb{P}^{1}$ and $u(x)=x^{m}$.
- They conjecture the answer in general.

Main result

Theorem (H, Zieve)

Let K be a finitely generated field of characteristic 0 . Suppose

- \mathcal{C} / K is a curve together with $u: \mathcal{C} \rightarrow \mathbb{P}^{1}$,
- $f(x) \in K(x)$ is a rational function with $\operatorname{deg}(f) \geq 2$. If $a \in K$, then $\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}$ is a finite union of arithmetic progressions.
- Arithmetic progression $=\{m+k \ell: k \in \mathbb{N}\}$ for some m, ℓ. Note: $\ell=0$ is allowed.
- $\operatorname{deg}(f) \geq 2$ excludes counterexamples like $f(x)=x+1$.

Main result

Theorem (H, Zieve)

Let K be a finitely generated field of characteristic 0 . Suppose
$\downarrow \mathcal{C} / K$ is a curve together with $u: \mathcal{C} \rightarrow \mathbb{P}^{1}$,

- $f(x) \in K(x)$ is a rational function with $\operatorname{deg}(f) \geq 2$.

If $a \in K$, then $\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}$ is a finite union of arithmetic progressions.

- This result may be seen as an "arithmetic dynamical Mordell-Lang theorem for curves."
- Roughly: if an orbit of f enters the image of u infinitely often, then it does so periodically with only finitely many exceptions.

Step 1: Translation

1. Translate into the "dynamics of fiber products."

Fiber products

- A, B, C curves defined over a field K.

- $A \times_{C} B$ is a union of curves defined over K $\left(K(A) \otimes_{K(C)} K(B)\right.$ not necessarily a field.)
- Concretely: If u, v are rational functions, then $A \times_{c} B$ is defined by $u(x)=v(y)$, and u^{\prime}, v^{\prime} are projections onto y, x coordinates.

Fiber products

- A, B, C curves defined over a field K.

- Key property: Points on $A \times_{C} B$ are the same as pairs of points on A and B mapping to the same point in C.

Dynamics of fiber products

- If $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is a rational function, we can take fiber products of u with f^{n}.

- View this as a dynamical system: u_{n} is the " nth iterate of u " under iterated fiber products with f.

Translation

- Correspondence: $f^{m}(a) \in u(\mathcal{C}(K)) \Longleftrightarrow a \in u_{m}\left(\mathcal{C}_{m}(K)\right)$.
- Suppose u has a finite orbit under f, say $u_{m+\ell}=u_{m}$.

$$
a \in u_{m}\left(\mathcal{C}_{m}(K)\right) \Longrightarrow f^{m+k \ell}(a) \in u(\mathcal{C}(K))
$$

- u has finite orbit $\Longrightarrow\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}$ is a finite union of arithmetic progressions.

Step 2: Reduction

- If we can show u has a finite orbit under iterated fiber products with f, then we are done!
- ...but that's not true.
- Generic case: $\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}$ is finite.
- We show u has finite orbit when $\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}$ is infinite.

Step 2: Reduction

- Reduction: suppose all \mathcal{C}_{m} are geometrically irreducible and that there are infinitely many distinct $f^{n}(a)$ in $u(\mathcal{C}(K))$.
$\Rightarrow \mathcal{C}_{m}(K)$ is infinite for all $m \geq 0$.

Theorem (Faltings)

Let K be a finitely generated field of characteristic 0 and let \mathcal{C} be a smooth projective curve defined over K. If $\mathcal{C}(K)$ is infinite, then \mathcal{C} has genus at most 1.

- Therefore \mathcal{C}_{m} has genus at most 1 for all m.

Bounded genus

- All \mathcal{C}_{m} having genus at most 1 is a very strong constraint!

Theorem (H, Zieve)

Let $V \subset \mathbb{P}^{1}(\bar{K})$ be the set of critical values of u_{m} for all m.
The following are equivalent:

1. All \mathcal{C}_{m} have genus at most 1 ,
2. V is finite,
3. V has at most 4 elements.

In this case, $f(V) \subseteq V$.

- Given our reduction, all u_{m} have critical values contained in a set V with at most 4 elements.
- Topology: up to isomorphism there are finitely many branched covers of $\mathbb{P}^{1}(\bar{K})$ with degree d and critical values contained in a finite set V.
- For all $m, \operatorname{deg}\left(u_{m}\right)=\operatorname{deg}(u)$ and $\operatorname{crit}\left(u_{m}\right) \subseteq V$.
- Therefore u has a finite orbit!

Strategy overview

1. Translate into the "dynamics of fiber products."

- $\left\{n: f^{n}(a) \in u(\mathcal{C}(K))\right\}=$ a finite union of arithmetic progressions $\approx u$ has finite orbit under iterated fiber products with f.

2. Reduce to a tractable problem with Faltings's Theorem.

- All \mathcal{C}_{m} have genus at most 1 .
- This is where we need K to be finitely generated.

3. Topology of branched covers $\Longrightarrow u$ has finite orbit.

- This is where we need $\operatorname{char}(K)=0$.

Further questions

- Given f, can we determine all preperiodic maps u ?
- Can we give sharp bounds on the tail length and period length of a map u ?

Thank you!

